Energy EngineerPh.D.
12 Aug 2020

Measurement, Simulation, and 1D-Modeling of Turbocharger Radial Turbines at Design and Extreme Off-Design Conditions

To achieve an optimal matching between the turbocharger and internal combustion engine over a wide range of the engine operation map, their complex interaction is commonly analyzed by means of transient one-dimensional modeling. The pulsating flow of the engine exhaust gases causes high variations of turbine inlet mass flow, total pressure, and total temperature. This pushes the turbocharger turbine operation towards extreme off-design conditions. Hence, wide turbine operation maps are required as input for the one-dimensional models. The measurement of turbine maps is typically restricted by compressor choke and surge. At the same time, only minor geometrical changes are required to maintain the important thermal characteristics of the turbocharger. In this thesis the turbocharger compressor was converted into a centrifugal turbine to assist the axis rotation when the turbine produces or even consumes low power. For enhancing the power output from the compressor wheel, an IGV was placed upstream of the compressor inlet. To reduce the effort for adiabatizing, a simple correlation only dependent on fluid temperature measurements was developed. Further test monitoring strategies were documented that can assist the measurement of off-design conditions. With the obtained off-design data a CFD setup for the achievement of convergent results in extreme off-design conditions was validated. To reduce the problem of high swirl angles in the turbine outlet when operating with low mass flows, the outlet duct was extended and a tapered duct had to be attached just before the domain outlet. By means of the well validated CFD results, three-dimensional flow effects were analyzed. Operating in high off-design conditions the outlet swirl and thus, the static pressure gradient was so high that the flow collapses and a reverse flow develops. This reverse flow reenters the rotor and mixes again with the main flow. On one hand this effect produces pressure losses and locally negative torque at the hub. However, on the other hand the reentering flow increases the mass flow locally and restricts the flow section close to the hub. Hence, blade loading and local torque production are increased close to the shroud. Although a clear change in the stage loading vs. flow coefficient plot was noticed as soon as the reverse flow occurs, no clear impact on the efficiency can be seen. Further analysis of tip leakage flow over a wide range showed the importance of friction driven flow and incidence induced leakage flow in off-design condition. In general, greater tip leakage losses were observed as further the turbine operates away from the design point. Furthermore, it was stated that a commonly used correlation for the characterization of tip leakage flow is not capable of reproducing either qualitative trends nor quantities when the tip gap height or the operating point is varied. Finally, the observed effects were modeled in one-dimensional form. A tip leakage loss model that is capable of reproducing the found trends and shows good extrapolation capability was developed. Results were validated using three-dimensional CFD data. As a result, it was possible to develop a novel method for tip leakage flow characterization, which can model tip leakage flow momentum and velocities for varying tip gap heights in design and off-design conditions. Following, a complete one-dimensional extrapolation model for adiabatic turbine efficiency maps was developed. Taking advantage of the newly developed tip leakage model and other findings from the CFD campaign, good extrapolation quality in terms of speed, blade-to-jet speed ratio and VGT opening was achieved. High accuracy of the results was stated by the comparison with the initially measured wide range data.

Comments Off on Measurement, Simulation, and 1D-Modeling of Turbocharger Radial Turbines at Design and Extreme Off-Design Conditions